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Abstract

Background

Gene-microbiome interactions are important in aetiology and pathogenesis of inflammatory

bowel disease, a chronic inflammatory disorder of the gastrointestinal tract consisting of Crohn’s

disease and ulcerative colitis. Scarce studies on gene-microbiome interactions show very little

overlap in their results. Therefore, it is of utmost importance that gene-microbiome studies are

repeated. We aimed to replicate the association between the SLC39A8 [Thr]391 risk allele and

gut microbiome composition in patients with inflammatory bowel disease and healthy controls.

Methods

We collected faecal samples, peripheral blood and extensive phenotype data from 291

patients with inflammatory bowel disease and 476 healthy controls. Carrier status information

was obtained from whole exome sequencing data, generated using the Illumina HiSeq. The

gut microbiome composition was determined by tag-sequencing the 16S rRNA gene. Associ-

ations between carrier status and disease were tested using the Wilcoxon-Mann-Whitney

test. Associations between carriers and gut microbiome composition were determined using

principal coordinate analyses, variance explained, alpha diversity and additive general linear

models in inflammatory bowel disease, healthy controls and all groups combined.

Results

Crohn’s disease patients were more often carriers of the missense variant (21/171, 12.3%)

than controls (30/476, 6.3%) (OR = 2.1, P = 0.01). We could not identify associations
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between carrier status and overall gut microbiome composition and microbial richness in all

tested groups after correcting for potential confounding factors. We did identify 37 different

operational taxonomical units to be associated with carrier status among the tested groups.

Two of these 37 were identified before in the discovery study.

Conclusions

We could confirm the genetic association of the SLC39A8 [Thr]391 risk allele with Crohn’s

disease but we could only limited replicate the association in gut microbiome composition.

Independent replication of gene-microbiome studies is warranted to identify true biological

mechanisms.

Introduction

Inflammatory bowel disease (IBD) is a common, chronic disorder of the gastrointestinal tract.

Patients with this disease experience periods of inflammation alternated by periods of remis-

sion. The most common subgroups of IBD are Crohn’s disease (CD), ulcerative colitis (UC)

and inflammatory bowel disease undetermined (IBDU)[1].

In the last ten years, large efforts have been made to identify the genomic landscape of

patients with IBD by conducting genome-wide association studies (GWAS). These studies

have resulted in the discovery of over 200 genomic regions associated with IBD [2–4]. The

genes in these genomic regions indicate that gene-microbe interactions underlie key parts of

the pathogenesis of IBD. As a result, studies have now begun to unravel the gut microbiome

composition in IBD patients [5,6], and IBD research is moving towards integration of the asso-

ciated genomic regions with the associated changes in gut microbiome composition.

Recently, three independent studies have reported on the integration of the host genome

and gut microbiome composition in the general population in Nature Genetics [7–9]. The

results of these studies showed very little overlap, probably due to the complexity and variabil-

ity of the gut microbiome composition. This already starts at the beginning of fecal sampling

collection. Differences in collecting methods of these samples or differences in DNA extraction

techniques could already lead to differences in results [10]. On top of that, different sequencing

techniques were used in these studies; two of them used tag sequencing of the 16S rRNA gene

to determine the gut microbiota composition and one study used metagenomics sequencing.

Furthermore, over a 100 factors have been identified to be of influence of the gut microbiome

composition [11]. In order to make different studies comparable to one another, the same fac-

tors should be taken into account. Thus, genome-microbiome associations should be assessed

with caution and replication of gene-microbiome associations is certainly warranted [12].

In 2016, Li et al reported the identification of a novel exonic missense variant in the

SLC39A8 gene (alanine 391 threonine, rs13107325) that was associated with Crohn’s disease

(CD) [13]. Importantly, they also reported that the SLC39A8 [Thr]391 risk variant for CD was

associated with the gut microbiome composition in patients with CD and in healthy controls

(HC), using microbiome data of 338 mucosal lavage samples from 171 individuals (including

patients with CD and HC) [13].

Given the importance of verifying gene-microbiome associations, we aimed to replicate Li

et al’s association between the SLC39A8 [Thr]391 risk allele and gut microbiome composition

in faecal samples in our Dutch cohort of patients with IBD and HC which is 4.5 times larger

than the original cohort [5,13]. Despite the differences in sample collection methods (lavage vs
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stool samples) we hypothesize that the influence of the SLC39A8 missense variant is also pres-

ent in our faecal samples, because of the large effect of this missense variant on the gut micro-

biome composition identified earlier by Li et al [13].

Materials and methods

Cohorts

We included 767 individuals, comprising 171 patients with CD, 104 patients with UC and 16

patients with IBDU from the University Medical Center Groningen (UMCG) IBD cohort and

476 HC from the LifeLines DEEP general population cohort in the Netherlands [5,14]. Faecal

samples, peripheral blood, and extensive phenotype data, including age, sex, BMI, and current

medication use, were available for all participants. The Institutional Review Board of the Uni-

versity Medical Center Groningen approved both the IBD cohort and the LifelinesDEEP

cohort (Institutional Review Board number 2008.338 for the IBD cohort and document num-

ber M12.113965 for the LifeLinesDEEP cohort) [5,14].

Genotyping

The determination of the presence of the SLC39A8 missense variant was obtained by using

whole exome sequencing (WES). For each participant, peripheral blood samples stored in

EDTA tubes (BD Vacutainer) were available. DNA extraction was performed using the Qjagon

Autopure LS with Puregene chemistry (Qiagen NV, Venlo, Netherlands). Sample preparation

was done by using Illumina Nextera prep kit and enrichment of the exonic sequences was per-

formed by hybrid capture using Illumina rapid Capture Enrichment (37 mb target). The illu-

mina hiSeq platform with 150 bp paired reads was used for sequencing. The mapping of reads

to the human genome reference sequence (GRCh37) was performed by using BWA-MEM. An

average sequencing depth of 20x covering 80 percent was used in the sequencing of all samples.

The average of our obtained reads is 90,655,419 (range 51,590,508–201,639,082) for all the

samples. Around 94 percent of the targeted regions were covered by 10 times or more and in

the case of 20 times or more this percentage is 87 percent. An extensive quality control and

variant calling process has been performed on all samples and is described in a previously pub-

lished study [15].

Gut microbiome composition

The gut microbiome composition of stool samples was determined using tag-sequencing of

the 16S rRNA gene as described previously [5,14]. In short: participants were asked to produce

and freeze a stool sample within 15 minutes after production. The samples were collected from

the patients’ homes on dry ice and stored in our –80˚C freezer. Faecal DNA was isolated by

making aliquots and for the isolation of microbial DNA the Qiagen AllPrep DNA/RNA Mini

Kit cat #80204 was used. Illumina MiSeq paired-end sequencing of the V4 region of the 16S

rRNA gene was performed. The forward primer 515F [GTGCCAGCMGCCGCGGTAA] and the

reverse primer 806R [GGACTACHVGGGTWTCTAAT] was used for this step. The microbiome

taxonomy was determined by operational taxonomic unit (OTU) picking using QIIME and

Usearch (V.7.0.1090) based on similarity of 97%, and Greengenes (V.13.8) was used as a refer-

ence database [5]. This led to the identification of 12,556 OTUs. Samples with less than 10,000

counts were removed. In comparison with the discovery paper, the OTUs were filtered based

on availability in at least 10 percent of the samples. Lastly, these OTUs were classified into 250

different taxa by summing the read counts and transform them into relative abundances. The
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codes used for these analyses are publicly available at: https://github.com/WeersmaLabIBD/

Microbiome/blob/master/16s_qiime2_pipeline.md

Overall gut microbiome composition and microbial richness

All statistical analyses were performed in each phenotypic cohort (CD, UC and HC) and all

groups combined (all phenotypic cohorts including patients with IBDU). The Wilcoxon-

Mann-Whitney test was used to identify the possible association between the presence of the

SLC39A8 [Thr]391 risk allele and disease status and the odds ratio was used to determine the

quantity of this effect. Overall microbiome composition (beta diversity) was assessed by Bray-

Curtis, Jensen-Shannon, Jaccard unweighted Unifrac and weighted Unifrac measurements.

Associations between the SLC39A8 [Thr]391 risk allele and the overall composition of the gut

microbiome were estimated by calculating the proportion of variance explained by the muta-

tion on the different beta diversity distance matrix, using a PERMANOVA test as imple-

mented in the adonis function of the vegan package in R [16]. Additionally, we analysed the

alpha diversity by calculating the Shannon, Chao1 and Simpson index as well as the number of

observed species per sample using vegan and phyloseq R packages. Differences in alpha diver-

sity between carriers and non-carriers were analysed through the non-parametric Wilcoxon-

Mann-Whitney test. All associations were evaluated with and without taking into account the

microbiome confounding factors: age, sex, sequencing depth and for the disease cohort also

the disease duration (measured as: years having IBD = fecal sample date—first diagnosis date).

For all these tests, p-values of<0.05 were considered statistically significant. The codes are

available at: https://github.com/WeersmaLabIBD/Microbiome/blob/2df040c67c8b75e514abe

896def1672bdcb2dee0/SLC39A8_16S

Association to taxa and OTUs

Possible associations between the individual operational taxonomical units (OTUs) and the

SLC39A8 [Thr]391 risk allele status were determined in the described groups by using univari-

ate and multivariate additive general linear models in the software tool MaAsLin as described

previously [5]. Covariates in the multivariate models comprised 11 confounding factors

known to influence the gut microbiome composition: age, sex, body mass index, proton-pump

inhibitor use, as well as antibiotic use and IBD medication (mesalazines, steroids, thiopurines,

methotrexate and TNF-α inhibitors) [5]. For patients with CD and UC, the amount of years

having the diagnosis IBD was also added as a covariate in the linear models. All analyses were

corrected for multiple testing by using the false discovery rate (FDR, Benjamini Hochberg

method) incorporated in the Q-package in R. An FDR of<0.05 was considered statistically

significant. In the discovery papers, only analyses in individual OTUs correcting for less con-

founding factors was performed [13]. In this study, we corrected for more factors, to prevent

identifying false-positives by the influence of confounding factors.

Results

Clinical characteristics and genetic association

We identified 21 carriers of the SLC39A8 missense variant in patients with CD (12.3%), 7 car-

riers in patients with UC (6.7%), 1 carrier in patients with IBDU (6.3%) and 30 carriers in HC

(6.3%). Because only 1 patient with IBDU was carrier of the missense variant, the differences

in the clinical characteristics between carriers and non-carriers of the SLC39A8 [Thr]391 risk

allele was not assessed in this group as depicted in Table 1. Smoking is defined as current

smoker at time of faecal sampling. Active disease is defined as a score of higher than 4 of the
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Harvey-Bradshaw index (disease severity measure for CD) or a score higher than 2.5 of the

Simple Clinical Colitis Activity Index (disease severity measure for UC). There were no statisti-

cally significant differences between carriers and non-carriers of the SLC39A8 missense variant

and the clinical characteristics in the described groups (Table 1). We did identify a trend in

which carriers of the missense variant have had longer the diagnosis IBD at time of faecal sam-

pling than non-carriers in patients with CD (means of 15 vs 12 years, P = 0.066, as depicted in

Table 1). Therefore, we took this factor into account in the analyses of the gene-microbiome

interaction. Patients with CD were more often carriers of the SLC39A8 risk allele than HC

(OR = 2.1, P = 0.01). This was not the case for patients with UC, nor for patients with IBDU

compared to HC (P = 0.8271 and P = 0.9949 respectively).

Overall gut microbiome composition and microbial richness

In overall gut microbiome composition, none of the tested groups showed any differential

clustering or distribution between mutation and non-mutation carriers in the principal coor-

dinate analyses of beta diversity (Fig 1 for within CD, S1–S3 Figs for within UC, HC and all

groups combined). We did identify a statistically significant difference between carrier status

and beta diversity in all groups combined in the unweighted Unifrac calculations of beta diver-

sity, without correcting for any potentially confounding factors (P = 0.024, S1 Table). Since the

missense variant is enriched in CD, we also added diagnosis in the corrected analysis of beta

diversity and carrier status. After correction, carrier status was not statistically significant

Table 1. Clinical characteristics of patients with CD, UC and healthy controls.

Crohn’s disease (n = 171) Ulcerative colitis (n = 104) Healthy controls (n = 476)

Factors SLC39A8 risk
allele carrier

No SLC39A8 risk
allele carrier

P-Value SLC39A8 risk
allele carrier

No SLC39A8 risk
allele carrier

P-Value SLC39A8 risk
allele carrier

No SLC39A8 risk
allele carrier

P-Value

Number 21 150 NA 7 97 NA 30 446 NA

Age in years (SD) 42.1 (15.3) 41.0 (14.1) 0.7047 55 (19.0) 46.7 (14.3) 0.159 44.4 (13.0) 45.8 (13.5) 0.6157

Males (%) 6 (28.6) 51 (34.0) 0.8048 3 (42.9) 47 (48.5) 1 12 (40) 211 (47.3) 0.5568

BMI (SD) 25.7 (5.1) 24.7 (4.7) 0.5267 26.5 (5.2) 26.5 (4.4) 0.9534 24.4 (4.0) 24.9 (3.8) 0.4268

PPI (%) 8 (38.1) 31 (20.1) 0.09497 2 (28.6) 11 (11.3) 0.2111 1 (3.3) 19 (4.3) 1

Antibiotics (%) 6 (28.6) 33 (22.0) 0.5787 2 (28.6) 13 (13.4) 0.2653 0 (0) 0 (0) 1

Mesalazines (%) 0 (0) 12 (8.0) 0.3651 6 (85.7) 76 (78.4) 1 0 (0) 0 (0) 1

Steroids (%) 6 (28.6) 29 (19.3) 0.3853 1 (14.3) 23 (23.7) 1 0 (0) 0 (0) 1

Thiopurines (%) 7 (33.3) 50 (33.3) 1 2 (28.6) 29 (29.9) 1 0 (0) 0 (0) 1

Methotrexate (%) 3 (14.3) 19 (12.7) 0.7369 0 (0) 1 (1.0) 1 0 (0) 0 (0) 1

Anti-TNFα (%) 9 (42.9) 64 (42.7) 1 0 (0) 10 (10.3) 1 0 (0) 0 (0) 1

CRP mean (range) 2.2 (1–14) 1.8 (1–13) 0.3223 1.4 (1–3) 1.4 (1–8) 0.7179 NA NA NA

Fcal mean (range) 12 (1–67) 9 (1–89) 0.665 14 (1–62) 15 (1–390) 0.7141 NA NA NA

Active disease (%) 8 (38) 31 (22) 0.1875 2 (29) 25 (26) 1 NA NA NA

Disease location

Ileum 9 (43) 51 (38) 0.7163 0 (0) 0 (0) 1 NA NA NA

Colon 5 (24) 25 (19) 0.6782 7 (100) 97 (100) 1 NA NA NA

Both 7 (33) 59 (44) 0.6859 0 (0) 0 (0) 1 NA NA NA

Smoking (%) 8 (38) 43 (30) 0.5916 2 (29) 13 (13.4) 0.5849 14 (24) 140 (20) 0.618

Disease duration

mean (range)

15 (1–29) 12 (1–48) 0.066 10 (2–17) 11 (1–37) 0.8301 NA NA NA

SD standard deviation; BMI body mass index; PPI proton pump inhibitors; Anti-TNFα tumour-necrosis-factor-α inhibitors; CRP C-reactive protein; Fcal Fecal

calprotectin; NA not applicable.

https://doi.org/10.1371/journal.pone.0211328.t001
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anymore on beta-diversity in all groups combined using unweighted Unifrac (P = 0.464, S2

Table). Furthermore, we could not identify any statistically significant changes between carrier

status of the missense variant and alpha diversity in all tested groups, both in corrected and

uncorrected analyses (Fig 2 for within CD, UC and HC, S4 Fig for all groups combined and S3

Table).

Fig 1. Beta diversity within Crohn’s disease by using four methods. Principal coordinate analysis of gut microbiome composition generated using 16S rRNA

sequencing of stool samples of 171 patients with CD. Depicted are four different methods to identify the beta diversity of these samples: A) Bray-Curtis

distances, B) Jaccard, C) unweighted Unifrac and D) weighted Unifrac. The 21 SLC39A8 [Thr]391 risk carriers are shown by red dots and 150 non-carriers by

black dots. There was no statistically significant association between the SLC39A8 [Thr]391 risk allele and beta diversity identified in CD, nor in the different

methods used.

https://doi.org/10.1371/journal.pone.0211328.g001
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Associations individual OTUs and taxa

We were able to identify associations between carrier status of the SLC39A8 missense variant

and individual OTUs; 2 OTUs in the univariate analyses and 37 in the multivariate analyses

(S4 Table). In the univariate analyses we identified in both CD and UC 1 associated OTU

(OTU-IDs = 2210025 and 4374663, FDR = 0.002 and 0.01 respectively) and none in HC or all

groups combined. In the multivariate analyses we identified 5 OTUs in CD, 5 in UC, 14 in HC

and 14 in all groups combined (S4 Table). For example, the family Lachnospiraceae was statis-

tically significantly increased in all tested groups in SLC39A8 missense variant carriers com-

pared to non-carriers, represented by 10 different OTUs divided over the tested groups. Only

2 of these 10 OTUs (OTU-ID 329703 and 4343184, FDR = 0.02 and 0.03, respectively), were

also statistically significantly associated with carrier status in non-overweight healthy controls

in the discovery paper [13]. Another example is in patients with UC, HC and all groups com-

bined, in which the family Ruminococcaceae was increased in carriers compared to non-carri-

ers. Ruminococcaceae was represented in 12 different OTUs divided over the mentioned

Fig 2. Alpha diversity within CD, UC and HC by using five methods. Alpha diversity calculated by five different methods, from left to right: Shannon Index,

Simpson, inversed Simpson, observed species and Chao1. Carrier status does not show statistically significant differences in non-carriers and carriers of the

SLC39A8 missense variants in Crohn’s disease, healthy controls and ulcerative colitis.

https://doi.org/10.1371/journal.pone.0211328.g002
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phenotypic cohorts, in which 1 OTU (OTU-ID 195950, FDR = 0.048) showed overlap with the

findings of the discovery paper13. From the 877 associated OTUs from the discovery paper

[13], we were only able to identify 5 of them to be statistically significantly associated with car-

rier status of the SLC39A8 missense variant in our cohort (S4 Table). However, we could not

identify any statistically significant associations between the SLC39A8 [Thr]391 risk allele and

the individual microbial taxa in the tested groups, in either the univariate- or multivariate anal-

ysis in which we corrected for covariates.

Discussion

The aim of this study was to replicate the finding of Li et al’s association between the SLC39A8
[Thr]391 risk allele and gut microbiome composition in our independent cohort of patients

with CD, UC, IBDU and HC, which was 4.5 times larger than the original cohort. This pro-

vides an increased power in order to detect true associations between carriers and microbial

changes. The SLC39A8 gene is known as a transporter of Zinc [17]. Zinc deficiency has been

associated before with a boost of inflammatory responses and with the increase of oxidative

stress, indicating the role of Zinc in immune functions [18,19]. The role of Zinc has also been

studied in the context of IBD, in which an in vitro study has shown that Zinc affects the integ-

rity of the intestinal mucosa [20]. In our previous study we have shown multiple factors to be

associated with the gut microbiome composition in the context of IBD [5]. Given the large

effects of the missense variant on the gut microbiome composition observed by the discovery

paper, the association of the missense variant to Crohn’s disease and the role of Zinc on the

immune system, we hypothesized that this missense variant could also be of influence in the

altered gut microbiome composition in IBD we observed earlier [5,13,17–20].

In this study we could identify the genetic variant to be associated with CD. In addition, the

impact on the microbiome composition was limited to a few OTUs, which due differences

between boths studies could not be directly compared. However, in OTU identification, we

could only replicate 5 OTUs to be associated with carrier status from the discovery paper [13].

When we restrict our analysis to taxonomical level, we could not identify any associations.

Microbial richness and overall gut microbiome composition changes previously reported,

could not be replicated. Although the mutation carrier status was statistically significantly

associated with beta diversity in the uncorrected analysis of the group all combined by using

unweighted Unifrac, after correction for IBD diagnosis, this was not statistically significant

anymore. Since the missense variant is enriched in CD, the difference was most likely to be

explained by the diagnosis IBD, instead of carrier status of the missense variant. This highlights

the importance of considering other factors when performing association studies in IBD

context.

We have observed in our results that all identified OTUs were characterized by low mean

read counts, ranging from 0–125 (S4 Table). This is also observed in the discovery paper, in

which 85% of their identified OTUs also had mean read counts ranging between these values

[13]. Therefore, it is very hard to determine if the reported results are indeed positive findings

or false positive results. It seems that on top of filtering the minimum prevalence of each taxon

(done at 10% in discovery and replication cohort), filtering for minimum abundance of each

OTU could reduce the amount of variation between cohorts but also reduce the amount of

potentially false positive associations. However, the observed differences between our study

and the discovery paper could also be due to the different experimental design [13]. The dis-

covery paper used mucosal lavage samples while the presented study uses faecal content.

Although both methods target the same ecosystem, the gut microbiota, different collection

methods as well as the use of intestinal preparation for the mucosal lavage can introduce
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significant changes in the proportion of microbes characterized [21]. In addition, we should

also consider the possibility that the findings are cohort specific due to geographical and cul-

tural differences. Furthermore, some extra variation could be introduced by discrepancies in

the computational processing and analyses of the samples. Finally, the effect of individual

OTUs could be biologically that small, that these effects cannot be detected in alpha and beta

diversity.

In the discovery paper of Li et al, large effects of the SLC39A8 missense variant on gut

microbiome composition has been described, indicated by the large numbers of associations

and effect sizes identified (more than 800 individual OTUs) [13]. In the past, strong signals on

the gut microbiota has been replicated, despite different methodologies used. One example of

these associations are the one between CD and the increased abundance of the family Entero-

bacteriaceae. This association has been identified in both adults and paediatric patients with

CD, in different sample types (faecal samples and gut mucosal biopsies) and in multiple disease

locations [22–28]. On top of that, our sample size is 4.5 times as large as the discovery study.

Taken these considerations into account, we hypothesized that despite different sampling col-

lection methods used, we would expect that the positive gene-microbiome signal could also be

reproduced in our faecal samples.

Since IBD research is still in the early phase of discovering genome-microbiome associa-

tions, the lack of replication is not uncommon in IBD cohorts or in general population studies.

Previous studies on IBD patients, in which functional variants in the mucus layer gene FUT2,

the bacterial antigen receptor gene NOD2, and the autophagy gene ATG16L1 were associated

with the gut microbiome [25,29,30], could also not be replicated [5]. Nor could the interac-

tions between the variant in NOD2 or the variant in the vitamin D receptor (VDR) and the gut

microbiome in the general population be replicated [7–9].

Genome-microbiome associations are hard to discover, since the presumed effect of indi-

vidual genomic variants on the gut microbiome is small, whereas the effect of environmental

factors on the gut microbiome can be much larger. Recently, we reported that the variance of

the gut microbiome is partly explained by over 100 phenotypes and environmental factors,

including medication use and diet [11]. In addition, correcting for multiple testing in genome-

wide, microbiome-wide association studies is complex, since the number of tests is hundreds

of times larger than in GWAS because of the addition of hundreds more microbial features.

Conclusions

Therefore, we argue that in future gene-microbiome studies much larger sample sizes, more

stringent statistical analyses (especially with regard to mean counts of OTUs and correcting

for confounding factors), replication in independent cohorts and elaborate descriptions of the

methods used are needed to pinpoint genome-microbiome associations in both IBD and HC.

Supporting information

S1 Fig. Beta diversity within ulcerative colitis by using four methods. Principal coordinate

analysis of gut microbiome composition generated using 16S rRNA sequencing of stool sam-

ples of 104 patients with UC. Depicted are four different methods to identify the beta diversity

of these samples: A) Bray-Curtis distances, B) Jaccard, C) unweighted Unifrac and D) weighted

Unifrac. The 7 SLC39A8 [Thr]391 risk carriers are shown by red dots and 97 non-carriers by

black dots. There was no statistically significant association between the SLC39A8 [Thr]391
risk allele and beta diversity identified in UC, nor in the different methods used.

(TIFF)
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S2 Fig. Beta diversity within healthy controls by using four methods. Principal coordinate

analysis of gut microbiome composition generated using 16S rRNA sequencing of stool sam-

ples of 476 healthy controls. Depicted are four different methods to identify the beta diversity

of these samples: A) Bray-Curtis distances, B) Jaccard, C) unweighted Unifrac and D) weighted

Unifrac. The 30 SLC39A8 [Thr]391 risk carriers are shown by red dots and 446 non-carriers by

black dots. There was no statistically significant association between the SLC39A8 [Thr]391
risk allele and beta diversity identified in HC, nor in the different methods used.

(TIFF)

S3 Fig. Beta diversity in all groups combined by using four methods. Principal coordinate

analysis of gut microbiome composition generated using 16S rRNA sequencing of stool sam-

ples of all 767 participants. Depicted are four different methods to identify the beta diversity of

these samples: A) Bray-Curtis distances, B) Jaccard, C) unweighted Unifrac and D) weighted

Unifrac. The 59 SLC39A8 [Thr]391 risk carriers are shown by red dots and 708 non-carriers by

black dots. After correction, there was no statistically significant association between the

SLC39A8 [Thr]391 risk allele and beta diversity identified in all groups combined, nor in the

different methods used.

(TIFF)

S4 Fig. Alpha diversity in all groups combined by using five methods. Alpha diversity calcu-

lated by five different methods, from left to right: Shannon Index, Simpson, inversed Simpson,

observed species and Chao1. Carrier status does not show statistically significant differences in

non-carriers and carriers of the SLC39A8 missense variants in all groups combined.

(TIFF)

S1 Table. Uncorrected analyses of variance explained by carrier status in beta diversity by

using Jenson-Shannon, Jaccard, Bray-Curtis, unweighted Unifrac and weighted Unifrac.

These analyses were performed in all tested groups: Patients with CD, patients with UC, HC

and all combined. A statistically significant difference was only identified between carrier sta-

tus and beta diversity in all groups combined by using the method unweighted Unifrac without

correction of disease status. In patients with CD and UC these analyses were also performed in

patients with a BMI< 25.

(XLSX)

S2 Table. Corrected analyses of variance explained by carrier status and beta diversity by

using Jenson-Shannon, Jaccard, Bray-Curtis, unweighted Unifrac and weighted Unifrac.

These analyses were performed in all tested groups: Patients with CD, patients with UC,

healthy controls and all combined. In patients with CD and UC, also disease duration was

added in the analyses. By correcting for different factors, carrier status was not associated to

changes in beta diversity in all tested groups. This was also the case for all different methods

used.

(XLSX)

S3 Table. P-values of carrier status and alpha diversity. Carrier status was not associated to

changes in alpha diversity. This was the case for all tested groups: Patients with CD, patients

with UC, HC and all combined. Also the different methods used for calculating alpha diversity,

and correcting or not correcting for potential confounding factors led to the same result.

(XLSX)

S4 Table. Univariate and multivariate analyses between specific OTUs and carrier status

(FDR < 0.05), red = increased abundance, blue = decreased abundance. A total of 2 OTUs

in the univariate and 37 OTUs in the multivariate analyses were identified to be associated to
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the SLC39A8 missense variant and individual OTUs. The asterisk indicates OTUs which have

also been identified in the discovery paper.

(XLSX)
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